The Bachelor of Science in Applied Engineering program teaches practical problem-solving skills and requires hands-on experience to prepare you for a fulfilling career in engineering. With access to state-of-the-art facilities, experienced faculty and real-world challenges, you'll gain the skills needed to solve complex engineering problems and make an impact in industry.
Applied Engineering - B.S.
Contact Us
- cae@kent.edu | 330-672-2892
- Speak with an Advisor
- Chat with an Admissions Counselor
Bachelor’s Degree in Applied Engineering
鶹ѡ’s Bachelor of Science in Applied Engineering provides students instruction in basic math and science, engineering principles, processes, project management and personnel management.
Program Information for Applied Engineering - B.S.
-
Program Description
Full Description
The Bachelor of Science degree in Applied Engineering successfully prepares graduates to apply basic engineering principles, engineering skills and management practices using a systems approach to provide leadership and solve applied technical problems that provide solutions addressing societal needs and challenges. The program provides students instruction in basic math and science, engineering principles, processes, project management and personnel management. Students learn in the classroom, as well as through hands-on experiments and real-world internships.
Applicants to this program should understand that this is a math-intensive program. The degree program can also function as a completer degree for students with an associate degree in engineering technology.
The Applied Engineering major comprises the following concentrations:
- The Applied Engineering and Technology Management concentration provides a focus on the application of management, design and technical skills for system integration; the execution of new product designs; the improvement of manufacturing processes; and the management and direction of physical and/or technical functions of an organization. Students also understand materials, facility design, quality and safety.
- The Foundry Technology concentration prepares students for employment in the metal casting industry. Students complete coursework in materials and processes, cast metals, metallurgy and material science, solid modeling and solidification. In addition, students apply their knowledge and skills in the capstone course on foundry tooling and pattern making. They also gain experience with programmable logic controllers, hydraulics, pneumatics and computer-aided manufacturing.
Students may apply early to the and double count 9 credit hours of graduate courses toward both degree programs. See the Policy in the University Catalog for more information.
-
Admissions
for Applied Engineering - B.S.
Admission Requirements
The university affirmatively strives to provide educational opportunities and access to students with varied backgrounds, those with special talents and adult students who graduated from high school three or more years ago.
First-Year Students on the Kent Campus: First-year admission policy on the Kent Campus is selective. Admission decisions are based upon cumulative grade point average, strength of high school college preparatory curriculum and grade trends. Students not admissible to the Kent Campus may be administratively referred to one of the seven regional campuses to begin their college coursework. For more information, visit the .
First-Year Students on the Regional Campuses: First-year admission to Kent State’s campuses at Ashtabula, East Liverpool, Geauga, Salem, Stark, Trumbull and Tuscarawas, as well as the Twinsburg Academic Center, is open to anyone with a high school diploma or its equivalent. For more information on admissions, contact the Regional Campuses admissions offices.
International Students: All international students must provide proof of English language proficiency (unless they meet specific exceptions) by earning a minimum 525 TOEFL score (71 on the Internet-based version), minimum 75 MELAB score, minimum 6.0 IELTS score or minimum 48 PTE Academic score, or by completing the ELS level 112 Intensive Program. For more information, visit the admissions website for international students.
Transfer Students: Students who have attended any other educational institution after graduating from high school must apply as undergraduate transfer students. For more information, visit the admissions website for transfer students.
Former Students: Former 鶹ѡstudents or graduates who have not attended another college or university since 鶹ѡmay complete the reenrollment or reinstatement form on the University Registrar’s website.
Admission policies for undergraduate students may be found in the University Catalog's .
Some programs may require that students meet certain requirements before progressing through the program. For programs with progression requirements, the information is shown on the program's Coursework tab.
Note: Applicants should understand that this is a math-intensive program. Students admitted to the program are expected to demonstrate prerequisite knowledge on a math placement exam (the ALEKS exam) prior to starting their first semester. Students who fail to obtain the minimum score required to place into the required math courses are at risk of delaying graduation.
-
Learning Outcomes
Program Learning Outcomes
Graduates of this program will be able to:
- Apply knowledge, techniques, skills and modern tools of mathematics, science, engineering and technology to solve broadly defined engineering problems appropriate to the discipline.
- Design systems, components or processes meeting specified needs for broadly defined engineering problems appropriate to the discipline.
- Apply written, oral and graphical communication in broadly defined technical and non-technical environments, and an ability to identify and use appropriate technical literature.
- Conduct standard tests, measurements and experiments and analyze and interpret the results to improve processes.
- Function effectively as a member as well as a leader on technical teams.
The educational objectives of the program are the following:
- Drive positive change in the community by engaging in careers in the areas of manufacturing, quality, engineering management, foundry operations or related fields in a manner that promotes excellence and integrity.
- Practice forward-thinking through continued education by way of professional development, graduate education and other continued self-motivated learning.
- Successfully navigate the ever-changing trajectory of the world, practicing compassion as you strive to meet your personal and professional goals.
-
Coursework
On This Page
Program Requirements
Major Requirements
Course List Code Title Credit Hours Major Requirements (courses count in major GPA) BA 44152 PROJECT MANAGEMENT 1,2 3 or EMAT 41510 PROJECT MANAGEMENT AND TEAM DYNAMICS (WIC) or ENGR 36620 PROJECT MANAGEMENT IN ENGINEERING ENG 20002 INTRODUCTION TO TECHNICAL WRITING 3 ENGR 11001 INTRODUCTION TO ENGINEERING 2 ENGR 11002 INTRODUCTION TO ENGINEERING LABORATORY 1 ENGR 13586
& ENGR 13587COMPUTER AIDED DESIGN I
and COMPUTER AIDED DESIGN I LABORATORY3 or MERT 12001 COMPUTER-AIDED DESIGN ENGR 20000 PROFESSIONAL DEVELOPMENT IN ENGINEERING 1 ENGR 20002 MATERIALS AND PROCESSES 3 ENGR 23585 COMPUTER AIDED DESIGN II 3 ENGR 30001 APPLIED THERMODYNAMICS 3 ENGR 31000 CULTURAL DYNAMICS TECHNOLOGY (DIVD) (WIC) 2 3 ENGR 31016 MANUFACTURING TECHNOLOGY 3 ENGR 31065 CAST METALS 3 ENGR 33031 PROGRAMMABLE LOGIC CONTROLLERS 3 ENGR 33033 HYDRAULICS/PNEUMATICS 3 ENGR 33111 STATICS AND STRENGTH OF MATERIALS 3-6 or MERT 22005
& MERT 22007STATICS
and STRENGTH OF MATERIALSENGR 33700 QUALITY TECHNIQUES 3 ENGR 33870 FACILITY DESIGN AND MATERIAL HANDLING 3 ENGR 35550 LAW AND ETHICS FOR ENGINEERS 3 ENGR 43080 INDUSTRIAL AND ENVIRONMENTAL SAFETY 3 ENGR 43550 COMPUTER-AIDED MANUFACTURING 3 Electrical Circuits Electives, choose from the following: 4-7 EERT 12000
& EERT 12001ELECTRIC CIRCUITS I
and ELECTRIC CIRCUITS IIENGR 21020
& ENGR 21022SURVEY OF ELECTRICITY AND ELECTRONICS
and SURVEY OF ELECTRICITY AND ELECTRONICS LABORATORYAdditional Requirements (courses do not count in major GPA) MATH 11010 ALGEBRA FOR CALCULUS (KMCR) 3 MATH 11022 TRIGONOMETRY (KMCR) 3 PHY 13001 GENERAL COLLEGE PHYSICS I (KBS) 4 PHY 13002 GENERAL COLLEGE PHYSICS II (KBS) 4 PHY 13021 GENERAL COLLEGE PHYSICS LABORATORY I (KBS) (KLAB) 1 PHY 13022 GENERAL COLLEGE PHYSICS LABORATORY II (KBS) (KLAB) 1 PSYC 11762 GENERAL PSYCHOLOGY (DIVD) (KSS) 3 PSYC 31773 INDUSTRIAL PSYCHOLOGY 3 UC 10001 FLASHES 101 1 6 9 Concentrations Choose from the following: 23-24 Minimum Total Credit Hours: 120 - 1
Some course options may require coursework outside of this program.
- 2
A minimum C grade must be earned to fulfill the writing-intensive requirement.
Applied Engineering and Technology Management Concentration Requirements
Course List Code Title Credit Hours Concentration Requirements (courses count in major GPA) BA 24056 BUSINESS ANALYTICS I 3 ENGR 27210 INTRODUCTION TO SUSTAINABILITY 3 ENGR 43899 APPLIED ENGINEERING CAPSTONE (ELR) 3 ENGR 47200 SYSTEMS ENGINEERING 3 Additional Requirements (courses do not count in major GPA) ECON 22060 PRINCIPLES OF MICROECONOMICS (KSS) 3 General Electives (total credit hours depends on earning 120 credit hours, including 39 upper-division credit hours) 1 8 Minimum Total Credit Hours: 23 - 1
Students wishing to complete internships and/or cooperative education opportunities are encouraged to do so during the summer. Those wishing to take off a semester for a co-op will likely delay graduation by a year.
Foundry Technology Concentration Requirements
Course List Code Title Credit Hours Concentration Requirements (courses count in major GPA) ENGR 33364 METALLURGY AND MATERIALS SCIENCE 3 ENGR 41065 SOLID MODELING AND SOLIDIFICATION SIMULATION 3 ENGR 45099 CAPSTONE: FOUNDRY TOOLING AND PATTERN MAKING (ELR) 3 Additional Requirements (courses do not count in major GPA) CHEM 10050 FUNDAMENTALS OF CHEMISTRY (KBS) 3 COMM 15000 INTRODUCTION TO HUMAN COMMUNICATION (KADL) 3 HRM 34180 HUMAN RESOURCE MANAGEMENT 3 MGMT 24163 PRINCIPLES OF MANAGEMENT 3 3 Minimum Total Credit Hours: 24 Graduation Requirements
Graduation Requirements Summary Minimum Major GPA Minimum Overall GPA 2.250 2.000 -
Roadmap
On This Page
Roadmaps
Applied Engineering and Technology Management Concentration
This roadmap is a recommended semester-by-semester plan of study for this major. However, courses designated as critical (!) must be completed in the semester listed to ensure a timely graduation.
Plan of Study Grid Semester One Credits ENGR 13586
& ENGR 13587or MERT 12001COMPUTER AIDED DESIGN I
and COMPUTER AIDED DESIGN I LABORATORYor COMPUTER-AIDED DESIGN3 ENGR 20002 MATERIALS AND PROCESSES 3 ! MATH 11010 ALGEBRA FOR CALCULUS (KMCR) 3 UC 10001 FLASHES 101 1 Kent Core Requirement 3 Kent Core Requirement 3 Credit Hours 16 Semester Two ENGR 11001 INTRODUCTION TO ENGINEERING 2 ENGR 11002 INTRODUCTION TO ENGINEERING LABORATORY 1 ENGR 23585 COMPUTER AIDED DESIGN II 3 ! MATH 11022 TRIGONOMETRY (KMCR) 3 PSYC 11762 GENERAL PSYCHOLOGY (DIVD) (KSS) 3 Kent Core Requirement 3 Credit Hours 15 Semester Three BA 24056 BUSINESS ANALYTICS I 3 ! ENG 20002 INTRODUCTION TO TECHNICAL WRITING 3 ENGR 31016 MANUFACTURING TECHNOLOGY 3 ! PHY 13001 GENERAL COLLEGE PHYSICS I (KBS) 4 ! PHY 13021 GENERAL COLLEGE PHYSICS LABORATORY I (KBS) (KLAB) 1 Credit Hours 14 Semester Four ! ECON 22060 PRINCIPLES OF MICROECONOMICS (KSS) 3 ENGR 20000 PROFESSIONAL DEVELOPMENT IN ENGINEERING 1 ! ENGR 31065 CAST METALS 3 ENGR 33033 HYDRAULICS/PNEUMATICS 3 ! PHY 13002 GENERAL COLLEGE PHYSICS II (KBS) 4 ! PHY 13022 GENERAL COLLEGE PHYSICS LABORATORY II (KBS) (KLAB) 1 Credit Hours 15 Semester Five ENGR 33111 or MERT 22005 and MERT 22007STATICS AND STRENGTH OF MATERIALS or STATICS and STRENGTH OF MATERIALS3-6 ENGR 33700 QUALITY TECHNIQUES 3 ! PSYC 31773 INDUSTRIAL PSYCHOLOGY 3 Electrical Circuits Electives 4-7 General Elective 3 Credit Hours 16 Semester Six BA 44152 or EMAT 41510
or ENGR 36620PROJECT MANAGEMENT or PROJECT MANAGEMENT AND TEAM DYNAMICS (WIC)
or PROJECT MANAGEMENT IN ENGINEERING3 ! ENGR 33031 PROGRAMMABLE LOGIC CONTROLLERS 3 ENGR 33870 FACILITY DESIGN AND MATERIAL HANDLING 3 Kent Core Requirement 3 Kent Core Requirement 3 Credit Hours 15 Semester Seven ENGR 27210 INTRODUCTION TO SUSTAINABILITY 3 ENGR 30001 APPLIED THERMODYNAMICS 3 ENGR 35550 LAW AND ETHICS FOR ENGINEERS 3 ENGR 43550 COMPUTER-AIDED MANUFACTURING 3 ENGR 47200 SYSTEMS ENGINEERING 3 Credit Hours 15 Semester Eight ENGR 31000 CULTURAL DYNAMICS TECHNOLOGY (DIVD) (WIC) 3 ENGR 43080 INDUSTRIAL AND ENVIRONMENTAL SAFETY 3 ENGR 43899 APPLIED ENGINEERING CAPSTONE (ELR) 3 General Electives 5 Credit Hours 14 Minimum Total Credit Hours: 120 Foundry Technology Concentration
This roadmap is a recommended semester-by-semester plan of study for this major. However, courses designated as critical (!) must be completed in the semester listed to ensure a timely graduation.
Plan of Study Grid Semester One Credits COMM 15000 INTRODUCTION TO HUMAN COMMUNICATION (KADL) 3 ENGR 13586
& ENGR 13587or MERT 12001COMPUTER AIDED DESIGN I
and COMPUTER AIDED DESIGN I LABORATORYor COMPUTER-AIDED DESIGN3 ENGR 20002 MATERIALS AND PROCESSES 3 ! MATH 11010 ALGEBRA FOR CALCULUS (KMCR) 3 UC 10001 FLASHES 101 1 Kent Core Requirement 3 Credit Hours 16 Semester Two CHEM 10050 FUNDAMENTALS OF CHEMISTRY (KBS) 3 ENGR 11001 INTRODUCTION TO ENGINEERING 2 ENGR 11002 INTRODUCTION TO ENGINEERING LABORATORY 1 ENGR 23585 COMPUTER AIDED DESIGN II 3 ! MATH 11022 TRIGONOMETRY (KMCR) 3 Kent Core Requirement 3 Credit Hours 15 Semester Three ! ENG 20002 INTRODUCTION TO TECHNICAL WRITING 3 ENGR 31016 MANUFACTURING TECHNOLOGY 3 ! PHY 13001 GENERAL COLLEGE PHYSICS I (KBS) 4 ! PHY 13021 GENERAL COLLEGE PHYSICS LABORATORY I (KBS) (KLAB) 1 PSYC 11762 GENERAL PSYCHOLOGY (DIVD) (KSS) 3 Credit Hours 14 Semester Four ENGR 20000 PROFESSIONAL DEVELOPMENT IN ENGINEERING 1 ENGR 33033 HYDRAULICS/PNEUMATICS 3 MGMT 24163 PRINCIPLES OF MANAGEMENT 3 ! PHY 13002 GENERAL COLLEGE PHYSICS II (KBS) 4 ! PHY 13022 GENERAL COLLEGE PHYSICS LABORATORY II (KBS) (KLAB) 1 Kent Core Requirement 3 Credit Hours 15 Semester Five ENGR 30001 APPLIED THERMODYNAMICS 3 ENGR 31000 CULTURAL DYNAMICS TECHNOLOGY (DIVD) (WIC) 3 ! PSYC 31773 INDUSTRIAL PSYCHOLOGY 3 Electrical Circuits Electives 4-7 Kent Core Requirement 3 Credit Hours 16 Semester Six BA 44152 or EMAT 41510
or ENGR 36620PROJECT MANAGEMENT or PROJECT MANAGEMENT AND TEAM DYNAMICS (WIC)
or PROJECT MANAGEMENT IN ENGINEERING3 ENGR 31065 CAST METALS 3 ! ENGR 33031 PROGRAMMABLE LOGIC CONTROLLERS 3 ENGR 33364 METALLURGY AND MATERIALS SCIENCE 3 Kent Core Requirement 3 Credit Hours 15 Semester Seven ENGR 33111 or MERT 22005 and MERT 22007STATICS AND STRENGTH OF MATERIALS or STATICS and STRENGTH OF MATERIALS3-6 ENGR 33700 QUALITY TECHNIQUES 3 ENGR 35550 LAW AND ETHICS FOR ENGINEERS 3 ENGR 41065 SOLID MODELING AND SOLIDIFICATION SIMULATION 3 ENGR 43550 COMPUTER-AIDED MANUFACTURING 3 Credit Hours 15 Semester Eight ENGR 33870 FACILITY DESIGN AND MATERIAL HANDLING 3 ENGR 43080 INDUSTRIAL AND ENVIRONMENTAL SAFETY 3 ENGR 45099 CAPSTONE: FOUNDRY TOOLING AND PATTERN MAKING (ELR) 3 HRM 34180 HUMAN RESOURCE MANAGEMENT 3 Kent Core Requirement 3 Credit Hours 15 Minimum Total Credit Hours: 121 -
Program Delivery
- Delivery:
- In person
- Location:
- Kent Campus
- Delivery:
-
Accreditation
for Applied Engineering - B.S.
The B.S. degree in Applied Engineering - Applied Engineering and Technology Management concentration - is accredited by the Association of Technology, Management and Applied Engineering (ATMAE). The College of Aeronautics and Engineering is accredited as a “Certified School” by the Foundry Educational Foundation (fefinc.org).
-
Student Achievement Data
Applied Engineering; Enrolled 2018 2019 2020 2021 2022 2023 2024 225* 128* 68* 40 31 41 42 Applied Engineering; Graduated 2018 2019 2020 2021 2022 2023 2024 71* 54* 65* 31 12 24 11 *Old BS in Applied Engineering with subject concentrations
Examples of Possible Careers and Salaries for Applied Engineering - B.S.
Graduates of 鶹ѡ's Bachelor of Science in Applied Engineering are able to apply knowledge, techniques, skills and modern tools of mathematics, science, engineering and technology to solve broadly defined engineering problems appropriate to the discipline.
-
Architectural and engineering managers
2.6%
slower than the average
198,100
number of jobs
$149,530
potential earnings
-
Industrial engineering technologists and technicians
1.5%
slower than the average
68,500
number of jobs
$57,320
potential earnings
-
Industrial production managers
0.9%
little or no change
190,100
number of jobs
$108,790
potential earnings
-
Materials engineers
1.5%
slower than the average
27,500
number of jobs
$95,640
potential earnings
-
Notice: Career Information Source
* Source of occupation titles and labor data comes from the U.S. Bureau of Labor Statistics' . Data comprises projected percent change in employment over the next 10 years; nation-wide employment numbers; and the yearly median wage at which half of the workers in the occupation earned more than that amount and half earned less.